If you looked at the
ORP post and the links to manufacturer's own tables of ORP vs. FC in various conditions, it's all over the map. That means using ORP as a reliable measure of disinfection isn't very useful except on a broad scale. The ORP data is all over the place. Also, as for the Oakton meter, it was used in a study of 194 pools taking 620 samples as shown in
this post. Note how the ORP is much more highly correlated to the calculated hypochorous acid concentration (which is roughly half the FC/CYA ratio) than it is to FC alone. This is, of course, expected, yet the 2009 paper you referenced didn't even bother doing the calculations for HOCl. Also note that in the pool study using the Oakton meter, many pools also had built-in ORP systems yet in 23% of those measuring the same water they showed 100 mV or more differences, some higher some lower. This wasn't just an issue of calibration either -- the Oakton was regularly calibrated for each day's measurements.
ORP measures a thermodynamic quantity, not reaction rates which is really what is relevant, and even then it doesn't actually follow the Nernst equation for chlorine and no one has explained why. The closest fit implies a chemical reaction with 0.6 to 0.8 electrons instead of the expected 2-electron reaction. Also, many chemicals including dissolved hydrogen gas from saltwater chlorine generators or the use of non-chlorine shock (potassium monopersulfate) can all affect ORP readings but do not result in the corresponding implied changes in disinfection rates. At best, ORP can be used for process control, as a setpoint, when accurately measuring FC, CYA and other water chemistry parameters.
Why spend hundreds of dollars on an ORP sensor when given the FC and CYA at normal pH near 7.5 you will know the active chlorine level? All you have to do is choose your FC/CYA ratio for your purposes. For those on this and other pool forums, the goal is to have enough chlorine to kill green and black algae faster than they can grow. In manually dosed pools, this is roughly an FC that is 7.5% of the CYA level (in saltwater chlorine generator pools it's roughly an FC that is 5% of the CYA level). If you were wondering what the kill times are like,
this post lists them for an FC that is around 10% of the CYA level -- the equivalent of 0.1 ppm FC with no CYA. For commercial/public pools, a decent minimum would be no lower than this and might be an FC that is 20% of the CYA level so equivalent to 0.2 ppm FC with no CYA. This balances disinfection and oxidation times against minimizing disinfection by-products and oxidation of swimsuits, skin and hair and of corrosion rates.